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THE DESIGN OF SAILPLANES FOR OPTIMUM TBERMAL 

SOARING PERFORMANCE1 

By Clarence D. Cone, Jr. 

SUMMARY 

The meteorological aspects of isolated buoyant convections (thermals) are 
discussed in relation to efficient soaring plane design, and the fundamental per- 
formance equation for soaring in such convections is derived. A design procedure 
for determining the optimum solution of the performance equation under specified 
thermal conditions is presented. The procedure integrates the simultaneous 
effects of meteorological, aerodynamic, and structural factors on soaring perform- 
ance. The design procedure is illustrated in the calculation and analysis of the 
design charts for a conventional-geometry sailplane intended for efficient thermal 
soaring. Various aspects of designing for adequate gliding qualities are also 
discussed. 

INTRODUCTION 

In the development of any aircraft the mission requirements ultimately 
dictate the design. In the particular case of sailplanes, development of a 
design is complicated by the fact that efficient overall performance requires 
that the craft satisfy the demands of two separate missions, those of the energy- 
extraction or soaring phase and those of the energy-utilization or gliding phase. 
In the soaring phase, the sailplane must be able to extract the energy of the 
invisible and somewhat unpredictable vertical air currents and to store this 
energy in the potential form as altitude. In the gliding phase, the craft must 
be able to make efficient use of this energy in performing some specified task, 
such as goal or distance flight. Unfortunately, the aerodynamic demands of each 
phase are such that the design for optimum soaring is, in most cases of practical 
interest, quite different from that necessary for efficient gliding flight. This 
basic difference requires a compromise of the final design. 

In the past, this compromise has usually favored maximum efficiency in 
gliding performance. The result has been an aircraft possessing desirable- 
gliding qualities, but with such limited soaring dependability that practical 

1The information contained in this publication was originally prepared for 
and presented at the 1961 Technical Symposium of the Soaring Society of America, 
Los Angeles, California, September 16, 1961 in a paper entitled "The Design and 
Performance Optimization of the Thermal Sailplane." By arrangement with the 
Society, the present expanded version is being released by NASA to increase 
availability. 



operation is feasible only when extensive and powerful energy sources are avail- 
able. The reason for the direction of this compromise is that most modern sail- 
planes have been built primarily for high performance in gliding competitions 
where emphasis, is placed upon distance and speed capabilities. Under appropriate 
conditions and when flown by highly experienced pilots, admirable performances in 
these events can indeed be attained with such specialized gliders, but this per- 
formance is generally,limited to the few days each year when sufficiently favor- 
able weather conditions exist. The frequency of occurrence of such conditions in 
most areas is too small to permit practical soaring with such craft. 

For practical soaring, what is needed is a sailplane that can perform certain 
and sustained flight with daily regularity, under all but dangerously stormy 
weather conditions. With such a craft, local goal and goal-and-return flight 
could be reduced to a daily routine. With such a craft, the primary practical 
limitations to soaring, namely, its relative uncertainty and geographical restric- 
tions, could be removed. To attain such performance, a sailplane must obviously 
be designed for high efficiency in the extraction of atmospheric energy. More 
specifically, the craft must be able to utilize the most widely distributed energy 
source of the atmosphere, the free thermal. (See refs. 1 and 2.) The aircraft 
which fulfills these requirements, therefore, may aptly be called the "thermal 
sailplane." To design the craft which will meet these goals, an intimate knowl- 
edge of thermal phenomena is mandatory. Since ,thermsl conditions vary widely 
from area to area and from season to season, the design of a given thermal 
soaring plane must fully reflect the meteorological conditions of its own specific 
operational area if the maximum soaring potential is to be realized. 

The basic problem in the design of a thermal sailplane is the determination 
of the optimum balance among'the various meteorological, aerodynamic, and struc- 
tural factors involved in order $0 obtain the most efficient machine. In addi- 
tion, there are the secondary problems of providing good stability, control, and 
maneuverability. The objective of this paper is to discuss quantitatively the 
more important aspects of these basic problems of thermal sailplane design and 
to provide a genersl procedure by which an optimum design can be established for 
a given body of thermal data and a given aircrsft construction technique. 

SYMBOLS 

A aspect ratio 

a vortex-ring core radius 

b wing span 

CD total aircraft drag coefficient 

cD,i induced drag coefficient 

'D,P parasite drag coefficient 
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wing profile drag coefficient v 

lift coefficient '. : 

rolling-moment coefficient 

wing chord 

section drag coefficient 

section lift coefficient 

modulus of elasticity 

gravitational constant 

altitude 

span efficiency factor 

lift-drag ratio 

lift loading intensity 

rolling moment 

dynamic pressure 

vortex-ring radius 

radial coordinate; radius of turn 

ting area 

equivalent parasite drag area 

flight velocity 

ascending speed of a thermal shell 

circling velocity in a turn 

headwind speed 

horizontal gliding speed in still air 

ground speed in a glide 

relative vertical velocity in a thermal 



vr relative radial velocity in a thermal 

U absolute vertical velocity of air in a thermal 

w gross weight 

Y spanwise coordinate 

i aerodynamic sinking velocity 

a angle of attack 

P angle of sideslip 

r vortex-ring circulation 

r0 circulation in center plane of wing 

7 structural weight coefficient 

6 optimization factor 

17 vertical coordinate in a thermal sheli“ 

0 glide angle 

P air density 

d thermal formation frequency 

cp angle of bank 

4f radius of turn factor 

Subscripts: 

min minimum value 

msx maximum value 

0 condition at outside wing tip 

i condition at inside wing tip 

b ballast 

Superscript: 

* optimum value 
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MEB?EOROLOGICAL BASIS OF THERMAL SOARING 

The most universally distributed and potentially valuable source of soaring 
energy appears to be the free thermal. (See refs. 1 and 2.) A lack of knowledge 
of the true nature of the velocity fields of such convections has, in the past,. 
retarded the development of an efficient thermal soaring plane. Recent advances 
in meteorological knowledge, however, particularly the development of the quanti- 
tative theory of the thermal shell and discovery of the mechanism of equilibrium 
thermal flight, have provided foundations upon which the design and construction 
of efficient thermal sailplanes can now proceed. 

Structure and Motion of Free Thermals 

The general theory of the free thermal has been treated in reference 2 and 
is discussed here only briefly. In principle, the free thermal closely approxi- 

(a) Internal structure. 

I- 

(b) Axis system. 

Figure l.- Internal flow structure of .a thermal 
shell. 

mates a buoyant vortex ring system in which 
the ring-to-core-radius ratio R/a is a 
relatively small number (R/a <= 10). As the 
buoyant ring rises, it is accompanied by an 
enclosing body or shell of cooler air which 
it has gathered from its surroundings, as 
shown in figure l(a). This cooler air con- 
tinuously circulates in closed streamlines 
around the vortex core and passes upward 
through the ring with high velocity and down- 
ward on the outside of the ring with a much 
lower velocity. The entire motion is sym- 
metrical with respect to the vertical axis of 
the shell (q-axis of fig. l(b)). This cir- 
culatory motion results in a continuous 
upward current over the center region of the 
shell; the free thermal is thus a self- 
sustained localized vertical current which 
maintains its power by the work of its buoy- 
ancy and, being completely free of any con- 
nection with the ground, floats along with 
the horizontal wind as it rises. 

Since the velocity field of a vortex 
ring can be. determined mathematically, the 
velocity field within a given thermal shell 
can be calculated when certain physical prop- 
erties and dimensions of the equivalent vor- 
tex ring are known. The velocity V' with 
which the thermal shell rises is given by 

V' (1) 
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and when the effective values for the circulation J?, the ring radius R, and 
the core radius a are given, the entire velocity field can be specified. The 
buoyancy of the vortex core causes the thermal shell to enlarge and to alter its 
velocity field slowly as it rises. 

When the effective values of I?, R, and a are specified for a particular 
thermal shell, a plot.of the vertical component v of the velocity field within 
the shell can be made; this plot is called a thermal diagram. Such a plot is 
shown in figure 2 for a thermal with R/a = 5. The diagram is nondimensional and 
applies to any size thermal for which R/a = 5. This diagram shows the distribu- 
tion of the vertical velocity relative to the core as a function of radial dis- 
tance r for various q-planes parallel to the core plane and was obtained from 
eqerimental data for the measured velocity field of a small buoyant convection 
shell in a water tank. (See ref. 2.) The dimensional thermal diagram (v plotted 
against r; 7, constant) can be obtained from figure 2 by multiplying the vertical 
and horizontal scales by the values of V' and R, respectively, for any par- 
ticular thermal with R/a = 5. The absolute vertical velocity of the air at any 
point in the thermal relative to earth is given by 

where V' is calculated from equation (1). 

Figure 2.- Thermal diagram for vertical velocity fieid. Nondimensional, g = 
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In general, the vertical components of the air motion within the thermal 
shell are of primary interest, since it is these currents which govern the avail- 
ability of the thermal energy for soaring. However, because of the circular ' 
motion of the air around the vortex core, lateral or radial velocity components 
also exist, and although these components are usually small and of little impor- 
tance in large thermals where the sailplane can circle in the almost pure central 
upcurrent, they may have a pronounced effect on the stability of sailplanes 
operating in thermals which are small compared with the wing span of the craft. 
A nondimensional plot of the relative radial velocity vr in the top half of a 
thermal with R/a M 5 is presented in figure 3. For the bottom half of the 
shell the pattern would be approximately the same, only the flow would be inward 
toward the ~-axis. This figure shows that the radial velocities become large 
only near the boundary of the thermal shell and directly above the vortex core. 

Flight Within Thermal Shells 

If a sailplane enters the top half of a thermal shell and begins circling 
with a radius r about the vertical T-axis, it will initially rise or sink rela- 
tive to the core until some v-level is reached where the value of v is equal to 
the aerodynamic sinking velocity i at that radius. At such a level, the thermal 

“r 

V' 

l&H .6 - --- 
.2 

.6 

“0 .I .2 93 .4 95 .6 .7 .8 .9 I .o 

Figure J.- Lateral velocity field of .S thermal shell. Nondimensional, E fj 5 . 
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will "capture" the sailplane and carry it along. If such a level can be found, 
the craft will attain a state of stable equilibrium with respect to the core and 
can maintain this position within the shell; ultimately, it will be carried to 
the maximum useful altitude reached by the thermal. Attainment of equilibrium, 
of course, requires that the thermal be large enough and intense enough to satisfy 
the aerodynamic characteristics and power requirements of the particular sail- 
plane. If the thermal is too small or too weak for equilibrium flight, that is, 
i>v everywhere in the thermal, the sailplane will sink relative to the core 
and must ultimately pass out of the shell. However, while thus sinking (rela- 
tive to the core), the craft may actually have gained altitude if (V' + v) > 5. 
The difference in available energy, depending on whether equilibrium is reached, 
can be very large. It is therefore obvious that the fundamental requirement for 
maximum efficiency in the use of a given thermal by a given sailplane is that 
equilibrium flight be possible for at least one radius of turn. 

An important factor in the ability of a sailplane to reach equilibrium 
involves the capability of the craft to make turns of sufficiently small radius. 
(See fig. 2.) For example, suppose that a certain sailplane can fly in the 
thermal represented by figure 2 at a minimum value of r/R = 1.0 with a minimum 
sinking velocity i such that C/V ' = 0.1. Then, as is obvious from the diagram, 
equilibrium cannot be attained anywhere in the thermal. If, however, the sail- 
plane could perform a turn of radius such that r/R = 0.3, the sinking velocity 
of the craft could increase to 14 times its initial value and the plane would 
still be able to attain equilibrium and make maximum use of the thermal. This 
condition illustrates an important fact in thermal soaring: a relatively ineffi- 
cient aircraft can still perform thermal soaring with maximum altitude gain, pro- 
vided it can execute turns of sufficiently small radius. The case here is that 
a quite adequate power supply exists if only the craft can get deep enough into 
the thermal to use it. 

If a sailplane enters a thermal below the core plane (7 negative), equilib- 
rium flight would still be possible, but the motion would be unstable since v 
increases continuously toward the core plane (7 = 0). This condition is illus- 
trated in figure 4 which shows the variation of v/V' with vertical distance 

T/R in the thermal. The magnitude and sign of the derivative WV' > 
a( v/R) 

measures 

the magnitude and nature of the level stability of a given circling orbit r,v. 
When the slope of the curves is positive (that is, in the region where v/R < 0), 
the equilibrium is unstable. Thus, a slight deviation from the equilibrium posi- 
tion would send the craft either climbing to the upper half of the thermal or 
else sinking completely out of the shell. It is therefore unlikely that any 
appreciable amount of equilibrium circling flight can be accomplished in the 
lower half of the thermal shell. 

In addition to this instability of the orbit level, the air motion in the 
region of the bottom stagnation point of the shell will not correspond exactly 
to the ideal vortex ring flow. Because of the buoyancy of the core, the impulse 
of the system must increase as the shell rises in unstable or neutrally stable 
air and the size of the shell will usually increase, especially during the early 
stages of formation. The additional air added to the shell is taken in at the 
very bottom so that in this region the shell is not actually closed as in the 
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Figure 4.- Equilibrium stability diagram. Nondimensional, g = 

ideal system. A sailplane flying below a rapidly growing shell might therefore 
be quickly sucked up into the top half of the thermal by this bottom upflow. 
There are also vertical currents flowing upward (relative to earth) for some dis- 
tance above and below the shell due to the so-called "drift flow" associated with 
the vertical motion of the thermal mass through the air. (See ref. 3.) 

Certain additional considerations of stability of circling flight and 
thermal distributions are presented in appendixes A and B, respectively. 

FUNDAMENTAL PERFORMANCE EQUATION OF THERMAL SOARING 

Maximum utilization of thermal energy requires that equilibrium with the 
thermsl be established. Equilibrium in a given thermal requires not only that 
the craft be able to circle within the upcurrent region but also that within some 
part of this region the aerodynamic sinking velocity be equal to the vertical 
velocity of the air relative to the thermal core. Thus, the relation between i 
and r is of critical importance since it determines the minimum thermal size 
and strength that can be used. The function i(r) constitutes the fundamental 
performance equation of thermal soaring flight. 



Derivation of Performance Equation 

The rather complex absolute motion of a sailplane in a thermal can be 
resolved into two simpler components, the motion of the craft relative to the air 
and the motion of the air relative to the earth. The latter component can be 
determined by use of the thermal theory; it is set by atmospheric conditions, 
being the given energy source which nature provides, and is quite beyond our 
power to alter or control. The former component, however, is fully open to alter- 
ation, subject only to the limitations of engineering and construction abilities. 
Shaping the sailplane's motion pattern to fit that of the air motion is thus the 
basic problem of thermal soaring design and is analogous to the balancing of 
power available by power required in internal powered aircraft design. The motion 
of the craft relative to the air is completely expressed by S(r). 

A consideration of the force and velocity equilibriums in a spiral glide 
(ref. 2) results in the following parametric equations for i(r): 

CD 

CL cos cp cot cp 

CD2 + (CL cos 'p) 
2 

where cp is the angle of bank in the turn. These equations can be validly 
simplified by noting that, for sailplanes, CD2 << c~~cos~p, and therefore the 
effects of CD2 csul be neglected. The fundamental performance equation, in 
parametric form, becomes 

r _ w 2 csc cp _ - -- 
0( ) s PQ CL 

(4) 

(5) 

By using any desired function for cp(r), the performance equation i(r) can be 
plotted by varying CD, an experimental or theoretical drsg polar being used to 
determine CD as a function of CL. With i(r) thus established, it is possible 
to determine the thermal performance of the craft. It should be noted, as men- 
tioned in reference 2, that a drag polar which accounts for the effects of cir- 
cling flight on the drag should be used with equations (5) and (6) if these 
effects are sufficient to cause appreciable deviation from the straight flight 
polar. 
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Method of Performance Analysis 

Superposition of.the i.(r) curve on the dimensional thermal diagram of any 
given..thernial till izmjediately show whethe,r equilibrium can be attained and will 
also show the 'exact regions of the thermal within which-the craft can fly in 
equilibrium: In,pa?ticular;.'when used with the "design" thermal, i(r) will 

shcti the degree. to which the design require- 
ments' 'can be met. This' procedure is illus- 
trated in figure 5 which shows a hypothetical 
thermal diagram'with the k(r) equation for 
two different sailplanes superposed. In the 
case of craft A, i(r) does not intersect 
-J(r) for any q-level in the thermal and 
hence equilibrium cannot be established. 
Sailplane B, on the other hand, has an appre- 
ciable region available over which equilibrium 
can be attained. 

Figure 5.- Use of thermal diagram for per- 
formance analysis. It is interesting to note that, except 

for the highest level, there are two values 
of the radius of turn for each q-level where 

equilibrium can exist. No matter where in the equilibrium region the craft flies, 
it will still rise with the same vertical velocity V' as does the entire shell. 
If, however, the craft is attempting to gain altitude rapidly, some initial gain 
in rate of climb can be obtained if the thermal is entered at a low level, by 
flying at radius r' as shown in figure 5. This radius corresponds to the high- 
est equilibrium v-level in the thermal and the sailplane initially will rise 
rapidly to this level from a lower one. 

It is obvious that for equilibrium thermal flight it is desirable that i(r) 
be as small as possible. For the larger thermals this condition insures a large 
equilibrium region and greatly reduces the need for accurate control of the cir- 
cling flight path; for the smaller thermals, it is a mandatory condition if equi- 
librium is to be achieved. For certainty of flight, the i(r) curve must be 
flat enough to allow the smallest, weakest thermals to be used. The various 
aerodynamic and structural factors which determine i(r) will now be analyzed 
with a view to finding the craft design which will best satisfy this requirement. 

DESIGN PROCEDURE FOR OPTIMUM SOLUTION OF PERFORMANCE EQUATION 

The problem of determining the minimum value of i(r) for an existing 
sailplane is first considered; and then the more important case of designing an 
optimum craft is discussed. 

Evaluation of Existing Sailplanes for Thermal Soaring 

The expressions for the sinking velocity and radius of turn are given by 
equations (5) and (6). For the case of an existing sailplane, the various factors 
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which are needed to determine i and r are already available. The flight wing 
loading W/S is known and the relation between CD and CL is given by the 
drag polar for the particular craft. In general, this polar is the lift-drag 
relation for straight gliding flight, but can usually be safely used,for esti- 
mating performance in turns because the minimum radius.of turn is very large com- 
pared with the span for most existing sailplanes. If, however, the craft can 
attain a minimum radius of turn of the same order of magnitude as the span, the 
polar for circling flight may vary considerably from that for straight flight. 
This variation is due to the asymmetric lift loading introduced by the spanwise 
gradients of velocity, sideslip, and angle of attack, as well as to the large drag 
increments associated with the trim control necessary in small turns. In such 
cases, a polar which accounts for these effects must be used. For very small 
turns this polar will be a function of the radius of turn. With the use of equa- 
tions (5) and (6), the sinking velocity may be calculated as a function of r for 
any desired variation of (p. 

The optimum combination of lift coefficient and bank angle.- In general, a 
sailplane can make a turn of given radius by use of any number of suitable combi- 
nations of lift coefficient and bank angle. However, since i is affected by 
both CD and (p, one particular combination of CL and Cp might be expected 
to produce a minimum sinking velocity. The remaining problem therefore is the 
determination of the optimum combination of CD and cp so that i will be a 
minimum at each radius of turn. To determine this relation, equation (6) is 
rewritten. in the form, 

( )( ) 43 21 :CDsincp= s ---r=$ (7) 

where JI is obviously a constant for a given radius of turn, that is, the prod- 
uct CDsin cp determines the radius. Since W/S and p are constants, choice 
of a series of values for r will give a corresponding series of values for +. 
Now i can be expressed as a function of q by the following substitutions: 

i= ,wz 
( ) 

112 CD 
SP (CL cos (p)l.5 = (&) 

* 1*5 bd'2 

or 

For a constant value of JI (corresponding to a specific radius of turn) i will 
be a minimum when the parameter 
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w-,2)15=8 
CD (10) 

is amaximum. Therefore, if a plot is made of CD against 6 for a constant 
value of Jr, the value of CL for which 6 is a maximum gives the optimum lift 
coefficient CD* for that radius and this CD value then determines the optimum 
angle of bank ~JJ*, according to the relation 

Cp'A = sin-l(&) = sin-'(i .& +) (11) 

Plots of CD* or the corresponding CL*, and (p* against radius of turn will 
give the optimum combination of angle of attack and bank for minimum sinking 
speed in circling flight. 

The minimum sinking velocity in turns.- The corresponding minimum value of 
the sinking velocity for each radius becomes 

* 

imin = 

(&) - If2 

l~5(wd'2 (12) 

where CD* is the optimum lift coefficient for the particular radius of turn 
and CD* is the corresponding drag coefficient. With this information, the 
minimum sinking velocity curve imin(r) can be constructed; when this curve is 
superposed on the thermal diagram, the performance of the craft can be directly 
evaluated. 

Optimum-Design Procedure for a Thermal. Soaring Plane 

The more important problem of the total design of a sailplane for maximum 
efficiency in thermal soaring will now be considered. To evolve a truly optimum 
design, it would be necessary to have a detailed knowledge of the thermal dis- 
tributions for the geographical area or areas over which the craft is to soar. 
The craft would then be designed for use of a sufficiently small minimum thermal 
size, the "design" thermal, such that the total frequency of usable thermals 
would assure certainty of sustained flight. 

The drw polar.- The basic design problem consists of determining the optimum 
balance among the various structural and aerodynamic parsmeters appearing in the 
fundamental performance equation (eqs. (5) and (6)) so that d(r) has its mini- 
mum possible value and rmin IS also very small. Before proceeding with the 
design considerations, it is convenient to expand the drag polar of equation (5) 
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into its components so that the individual effects of the various drag sources 
may be more clearly seen. Thus, 

CL2 
'D = 'D,p + cD,cn + x (13) 

Here CD,~ is the parasite drag coefficient and is obtained from the equiv- 

alent flat-plate drag area S, by dividing by the wing area S; (that is, 
cD,p = s,/s)* The wing profile drag coefficient for the selected wing section 

cD,m usually varies rather strongly with CD, and CD2 &A / is the induced drag 
coefficient where A is the geometrical aspect ratio and k is the efficiency 
factor that accounts for the deviation of the lift loading from the optimum 
elliptical form. In general, for small turns, k is a function of the radius. 
By using this drag polar form in equation (5), the performance equations can then 
be written as 

i = ( ~)“2($)“2(sec1a5q)cL1*5 (cD,p + cD,m + g) 

r= 
ot > 
w2 
s PQ (csc cp)c,-l 

I 

(14) 

(15) 

A rather complex interaction exists between the aerodynamic and structural 
parameters in both of these equations. For instance, if the span of the design 
is set, and A is allowed to increase, W/S also increases. A larger value of 
A means a lower value of i, aerodynamically, especially for the high CL values 
necessary in small radius turns. The accompanying increase in W/S, however, 
increases i as well as the radius of turn and thus tends to cancel the benefits 
of the larger aspect ratio. Additionally, increasing A necessarily increases 
the thickness ratio of the wing sections; thus, with normal wing sections, CD,czr 
increases and also tends to negate the benefits of the increase in A. Ulti- 
mately, the increase in CDIra with increase in A completely overcomes the 
reduction in CD,i, even at moderate lift coefficients. Also, if the wing loading 
and maximum lift coefficient are such that the wing span is an appreciable per- 
centage of the minimum radius of turn, the factor k (eq. (13)) can become a 
significant function of r for small turns since the wing loadings are no longer 
elliptical. Under such conditions CD,~ may also become a function of r; this 
condition will be discussed later. These interactions occurring in circling 
flight can pose considerably more involved design problems than is the case for 
straight gliding flight. 

The span length.- The first step in the present design procedure is to 
determine the span length. The selection of an optimum span for the thermal 
soarer is not a-simple matter, but two fundamental conditions aid in the choice. 
The first is the requirement of low W/S. Small spans generally mean lower gross 
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weights for a given wing area. This weight reduction is in the form of lower 
wing structural weight because of the smaller wing spars and lower fuselage and 
empennsge weights. The second condition involves the adverse effects encountered 
by large-span wings in turns of small radius. The nature of these effects is 
discussed in appendix A. The thermal soarer must have a low wing loading for 
efficient circling flight and therefore would be able to attain sufficiently small 
circles wherein these effects are important. 

Various criteria can be set up for this purpose. For example, a "design" 
minimum circling radius, as determined from thermal data, can be set. The maximum 
allowable span can then be calculated on the basis of the requirement that when 
executing a turn of this design radius, the go-percent semispan, or some other tip 
section of the inner wing, will still be some specified percentage below the stall 
angle of attack for the section, with a realistic value for CP. Another, but more 
involved, criterion for use in selecting the span would be a detailed analysis of 
the actual rolling moments and trim requirements of given spans at the design 
radius, by using a probable wing loading or of the total drag increases asso- 
ciated with the design radius of turn. 

The wing loading.- With the wing span chosen, the various factors and coef- 
ficients occurring in equations (14) and (15) must be determined so that the per- 
formance equation can be calculated. It is convenient to express these as func- 
tions of the aspect ratio. The factors involved in the determination of the wing 
loading are considered first. Since 

S b2 =- 
A (16) 

the aspect ratio sets the wing area; it also determines the structural wing 
loading. To determine the wing loading as a function of the wing geometry and 
construction technique to be used, the gross flight weight W of the craft can 
be expanded into its component parts as follows: 

W = w, + WS' + wb + wf 

where 

WO weight of pilot plus auxiliary equipment 

structurti weight of wing due to area 

w, structural weight of wing due to span (primarily spar weight) 

Wf structural weight of fuselage and empennage 

(17) 

These structural weight components can in turn be expressed in terms of weight 
functions: 
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wb (33) 

where the 7 coefficients are empirically determined or theoretically estimated 
constants which depend in value on the materials and techniques of construction. 
The specific expressions used here for the weight functions are arbitrary, but in 
general the form depends somewhat on the construction technique and materials 
used. More involved relations can be used, of course, such as those given by 
Wilkinson (ref. 4). However, care must be taken that the sailplanes used in the 
statistical derivation of such empirical relations are actually constructed with 
materials and techniques similar to those to be employed on the actual aircraft 
under design. Derivations based on large numbers of dissimilar sailplanes are 
not sufficiently accurate for specific design work. For new techniques and 
materials, specific weight functions must, of course, be developed by theoretical 
or experimental procedures. The functions used here have proven quite representa- 
tive for conventional sailplanes of wooden construction having very low wing 
loadings. Since a low wing loading is very necessary for thermal soaring in 
order to circle at the "design" radius, these relations show the need for using 
structural materials and methods which will mske'the 7 values sufficiently small 
and still meet the strength requirements. By using equations (16) and (17), the 
gross flight wing loading expressed as a function of wing span and aspect ratio 
becomes 

W- A A -= 
S w, - f Ts t- rbbA + 7f T; 

b2 (19) 

The wing profile drag.- The next factor of importance to be determined is 
the function CD,m. The selection of an optimum wing section in order to minimize 

cD,a at the higher lift coefficients where the craft will operate is also depend- 
ent on the aspect ratio. As has already been mentioned, a large aspect ratio 
requires a thick profile, and thickness ratio has a pronounced effect on both the 
CD,~ and CL,max of wing sections. For the NACA 4- and ?-digit airfoil series, 
'CL,max decreases beyond a thickness ratio of about 12 percent, whereas the 
minimum value of CDIm increases steadily with thickness increase. It is clear, 
therefore, that for these normal sections the aspect ratio must be held to a low 
enough value to allow sections of moderate thickness to be used. In general, it 
would be quite advantsgeous to use the very low drag laminar-flow sections char- 
acterized by the NACA 6-series airfoils. Unfortunately, nearly all of these pro- 
files, although very efficient in the lift-coefficient range of the drag "bucket," 
generally have very high drag values for CL above this range, even higher than 
those of the 4- and ?-digit series. It is, of course, the region of high lift 
coefficients which is of primary interest in thermal soaring. 

There are, however, some laminar airfoils which have the valuable property 
that increasing thickness causes the low drag bucket to shift to the higher CL 
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region with only a small increase in the minimum drag. Such sections, for 
example, the NACA 653-618, appear to hold much promise for application to thermal 
soaring planes; This particular section has a CD,co value of only 0.0061 at 
CL = 1.0, with a CL,msx of 1.3 at a Reynolds number of 3 x 106. The maximum 
L/D of this section occurs at CL = 1.04. Although the minimum drag value 
increases slightly as the Reynolds number decreases, the range of CL values 
over which the low drag exists increases. It thus appears that some exception- 
ally favorable profiles are available for specific use in design of the thermal 
soarer. 

The parasite drag.- The remaining factor to be determined in equation (14) 
is the parasite drag coefficient CD,~ which includes trim drag and is usually 
considered to be independent of angle of attack or lift coefficient. The parasite 
drag coefficient CD,~ plays an important role in determining the sinking veloc- 
ity of a sailplane and should always be reduced to its lowest possible value. The 
parasite drag coefficient can be reduced by,eliminating as much fuselage and 
empennage area as possible and by paying strict attention to such drsg-producing 
details as fuselage-wing junctures, canopy contour and fairing, control gaps, 
miscellaneous protuberances, and prevention of all areas of separated flow. Gen- 
erally, the parasite drag coefficient can be expressed in terms of an equivalent 
flat-plate drag area S, obtained by summing the equivalent areas of all the 
parasite-drag producing components; CD,~ is then obtained by the relation 

% 
cD,p = s (20) 

Generally, S, will have a value which is nearly independent of wing area, and 

'D,P will decrease as the aspect ratio decreases 

(21) 

Optimization procedure.- With the value of b determined, choice of a value 
for the aspect ratio will determine the wing area, the wing loading, and the 
-parasite drag coefficient by use of equations (16), (lg), and (21), respectively. 
since CD,~ is also known for the selected profile, all the factors necessary 
for determining the circling performance curve i(r) from equations (14) and (15) 
are available. There remains only the need for optimizing the performance curve. 
This is done in exactly the same manner as outlined in the preceding section for 
the case of an existing design by use of the 9 - 6 procedure. Since the drag 
polar of the design aircraft is now available, the optimization procedure reduces 
to that for a craft with known characteristics. 

For the selected span length, a series of optimum performance curves 
&in( r > can be determined for any desired range of values for the aspect ratio. 
A plot of these curves will then indicate very clearly the optimum value or range 
of values for the aspect ratio, when used in conjunction with the design turn 
radius or the model thermal diagram. In this way, the effects of aspect ratio on 
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all the various aerodynamic and structural parameters can be integrated, and the 
optimum value selected for any specified construction technique. 
the optimization calculations also yield the optimum values CL*, 

In addition, 
or a*, and 

(P* for minimum sinking speed at each radius. 

It is assumed in the foregoing procedure that the best available or best 
possible values for the various parameters will be used, consistent with the 
materials and methods to be used for construction. The performance charts will 
then indicate whether these parameter values will allow the craft to attain the 
desired design performance. On the other hand, by suitably varying the individual 
parameters and calculating the associated performance curves, the necessary values 
which the various parameters must have in order to attain a given performance can 
be ascertained. Whether such values can actually be realized in a sailplane will 
depend entirely upon the physical limitations of the construction methods avail- 
able. In any case, the design procedure can be used to establish the optimum 
performance possible with a given technique or to specify the values which must 
be attained to meet a given performance requirement. 

CALCULATION AND ANALYSIS OF PERFORMANCE CHARTS 

In order to illustrate the use of the foregoing procedure and to provide 
information useful for the preliminary design of thermal soaring planes, a set of 
performance curves has been prepared for a design series which is assumed to 
adhere closely to the general geometry layout of conventional sailplanes and 
which also assumes that conventional construction techniques are utilized. The 
charts are considered to be representative of sailplanes which can be realized 
with current state-of-the-art practices. The particular values used for the 
structural weight coefficients and the equivalent flat-plate drag area are repre- 
sentative of rather efficient design and construction methods and the charts, 
although realistic, are not intended to be conservative. These charts are ana- 
lyzed in this section and in the following section to illustrate their use in 
obtaining the optimum design for both the soaring and gliding phases of flight. 

Performance Chart Calculation 

Performance charts have been calculated for three different span lengths: 
?O, 40, and 50 feet. For each of these spans, the optimum performance curve 
Zmin(r) was calculated for each of five aspect ratios: 5, 8, 10, 15, 20. This 
aspect ratio range covers all practical cases. For calculation purposes, the 
basic (not optimum) performance equation can be expanded in terms of the struc- 
tural constants and drag coefficients to yield 

+ 7s + YbbA + 7f ~~‘2(~)1/2(sec1*5q)c<105(sfi $ + CD,~ + g) (22) 
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r= + 7s + rbbA + 7f (23) 

These equations can be easily programed for solution by machine computation for 
any desired input of constants and functions. The particular values of the con- 
stants and functions used in the computation of the illustrative performance 
curves are: 

w, = 190 lb (weight of pilot and equipment) 

7s = 0.73 lb/sq ft 

7f = 2.1 lb/ft 

7b = 0.000125 lb/cu ft 

g = 32.2 ft/sec2 

P = 0.002378 slug/cu ft 

%I = 1.0 sq ft 

k = 1.0 

CD,m = drag polar for the NACA 643-618 airfoil section 

The weight constants used are characteristic of wooden construction and are 
empirically determined from data for early sailplanes which generally had much 
lighter structures than present-day craft do. By using these coefficient values, 
the wing loading can be expressed as 

- = 190 A W 
S b2 

+ 0.73 + 2.1 % + (24) 

This relation has been plotted in figure 6 for the three span lengths. Two 
important facts are obvious from this plot. First, the wing loading increases 
linearly with the aspect ratio at a rate which depends upon the span length. 
Secondly, the larger the span, the lower the wing loading for a given aspect 
ratio. The reason for the smaller value of W/S for larger spans with the s&me 
A is, of course, that the increase In wing area lowers the wing loading due to 
the basic weight more than the wing loading increases because of the span 
increase. Thus, a low wing loading appears to require a large span and a small 
aspect ratio. 

In order to Illustrate the validity of equation (24) in predicting the wing 
loading, the value of W/S as calculated by this equation has been entered in 
figure 6 as a solid symbol for several actual sailplanes. The measured wing 
loading of the actual craft Is entered as an open symbol. It is obvious that 
equation (24) very adequately predicts the wing loadings, especially since the 
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Figure 6.- Variation of wing loading with aspect ratio for constant span lengths. The value W/S calcu- 
lated by equation (24) for specific sailplane is indicated by a solid syriibol. 

weight functions used are purposely intended to be indicative of considerably 
more efficient construction than that of the actual sailplanes used for the 
comparison. 

The wing efficiency factor of 1.0 is reasonably valid for the smaller spans 
if the wing is designed for elliptical loading. A value k = 1.0 is considered 
very optimistic for the 50-foot span in small turns. This value for k assumes, 
of course, that careful attention has been paid to canopy and fuselage-wing junc- 
ture design. The choice of a value of S, of 1.0 square foot is very realistic 
for the two smaller spans, but is very optimistic for the largest span in tight 
turns because of trim drag. 

The optimum choice of wing section is somewhat dependent upon the secondary 
flight phase, especially with use of a lsminar-flow section. More will be said 
concerning this subject in the next section. The choice of the NACA 643-618 was 
based on the very low drag of the at high lift coefficients and on the 
extensive range of the low drag bucket , which makes this airfoil 
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ideal for the overall flight range. The aerodynamic characteristics of this 
section as measured in the NASA low-turbulence wind tunnel at a Reynolds number 
of 3 x 106 are presented in figure 7. The characteristics of other suitable 
profiles are presented in references 5 and 6. 

Cl 
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Figure 7.- Profile drag polar for the NACA 643-618 section. 

Analysis of the Performance Charts 

The calculation of &in(r) was carried out for each span and aspect ratio 
according to the foregoing optimization procedure. A sample plot of the relation 
CL plotted against 6 for constant g values is presented in figure 8 for the 
case of b = 40 feet, A = 15. The final performance charts are presented in 
figure 9. A comparison of these figures indicates a distinct performance advan- 
tage by ,using the largest span (b- = 50 feet). This apparent advantage stems from 
the lower wing loading which occurs with the larger spans for a given aspect 
ratio. In reality, the performance curves of figure g(c) are not truly valid 
for the smsller radii of turn because of the adverse effects occurring with large 
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Figure 8.- Variation of 6 with CL for constant Jr values. b = 40 feet; A = 15. 

spans, as discussed in appendix A. The increase in total drag due to these 
effects would very probably raise the sinking velocity considerably for r-values 
below about 125 feet. For the larger values of r, the curves of figure g(c) are 
valid and clearly illustrate the advantage of low wing loading in obtaining a 
flat &i,(r) curve. For the 40-foot span (fig. g(b)) the sinking velocity in 
small turns can be kept to reasonable values by use of the smaller aspect ratios. 
The high wing loading occurring with the 30-foot span (fig. g(a)) makes the 
sinking velocity large for even medium size turns. 

For purposes of analysis, further discussion is limited to the case of 
designs with spans of 40 feet. (See fig. g(b).) Th e curves of figure g(b) 
clearly indicate the necessity of using relatively small aspect ratios for low 
sinking velocities in small turns. In general, the smaller the turn, the lower 
the aspect ratio must be for efficient flight. The curves also indicate that in 
no case does a large aspect ratio (A 2 20) produce the minimum sinking velocity, 
not even in straight gliding flight (r = co). It appears that the minimum i in 
gliding flight occurs for A = 15. The minimum radius of turn is shown in 
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figure p(b) and it is seen that rmin also decreases with decreasing aspect 
ratio, because of the decreasing wing loading. These curves show that with a 
40-foot span a sailplane could circle at a radius of 90 feet with a minimum 
sinking velocity of 3 feet per second for values of A between 8 and 10. From 
available thermal data, this low sinking velocity appears to be adequate for the 
attainment of equilibrium within thermals. 

The optimum aspect ratio, therefore, appears to lie in the region' ' 
8 5 A 5 10, an aspect ratio near 10 being more desirable for larger radii. For 
very small turns, aspect ratios less than 8 are more efficient, but b/r and i 
then become so large that this region of aspect ratios is of little practical 
interest. It is obvious that great improvements in circling efficiency, are still 
possible at all aspect ratios if only the total wing loading could be reduced 
while the &O-foot span is maintained. 

Optimum Flight Angles 

To illustrate the variation of the optimum lift coefficient CL* and the 
optimum bank angle q~* with radius of turn, figure 10 has been prepared for the 
specific case of the b = 40 feet, A = 8 design for which the performance curve 
is given in figure p(b). It is seen that both CL* and (p" increase slowly as 
r decreases and that even for small turns (r = 90 feet), 9* is still rela- 
tively small ((p" = 33.5O). For the particular design constants chosen, the inter- 
actions are such that the craft must be flown at a high lift coefficient 

( CL* 2 0.9 1 for minimum sinking velocity, even for turns of large radius. If it 
is assumed that the downwash is constant across the span and that the load dis- 
tribution experienced in small turns is essentially the same as in straight 
flight, CL* may be used to determine the optimum angle of attack 'CL*. The 
trend of the variation of CL* and. (p* with r is the same for.the other 
aspect ratios of figure g(b). 

Summary of CirclingJ?light Besign 

To summarize the results of the performance calculations of this section, 
it appears that a sailplane with a span of 40 feet and an aspect ratio of 8 to 10, 
and possessing the stated design characteristics, would be capable of performing 
equilibrium flight within small thermals the relative velocity of which in the 
core plane at a radius~-of 90 feet is .at least 3 feet per second.. Such-a craft 
can be constructed with- presently available techniques. However, improved 
circling performance is still possible if the wing loading of the craft could be 
reduced. Because of the low wing loading of this particular design 
(W/S = 2.14 pounds per square foot), only moderate optimum angles of bank are 
required in small turns. 
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DESIGN FOR THE COMF'LETE FLIGHT RANGE 

In general, it is desirable to do more than just make continuous circles 
within thermals and for truly practical soaring it is necessary that the craft 
also be able to use its potential energy of altitude for reasonably,efficient 
straight gliding flight to a preset goal or to return to its home field. More 
specifically, the craft must possess the necessary penetration power to reach a 
preset destination under normal or average headwind conditions. If it is assumed 
then that by use of the foregoing procedure a preliminary design has been selected 
on the basis of optimum soaring ability, it is now necessary to examine the 
gliding flight characteristics to see what compromise of the design, if any, must 
be made to obtain the desired gliding efficiency. 

Gliding Requirements 

In order to have reasonable gliding performance, two requirements must be 
met: the gliding angle 0 must be reasonably small and the wing loading must be 
large enough to give sufficient ground speed in moderate headwinds. Satisfaction 
of the second requirement guarantees that a thermal soaring plane will be able to 
perform preset goal and return flights with a high degree of reliability. The 
requirement of low wing loading for efficient thermal flight and high wing 
loading for penetration are, of course, incompatible so that some compromise may 
be necessary just as in the case of the high-performance sailplane. For the 
thermal soarer, this compromise need not be so severe, however, since only mod- 
erate ground speeds are required and since the craft design will be tailored to 
the meteorological conditions of its own particular geographical area. _ 

Gliding Angle 

A small gliding angle requires a large value of L/D as indicated by the 
relation 

8 = cot-1 L 
D (25) 

The smaller this angle, the greater will be the efficiency of the craft in 
using its potential energy of altitude for covering ground distance in still air. 
The lift-drag ratio is given by 

and the expression for 8 becomes 
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0 = cot -1 CL 
%rA 2 

‘ F+ 'D,m + & 

(27) 

When this relation is plotted as a function of -CL for the optimum thermal 
design, the gliding angle may be read directly,.and theminimum value of 8 
determined by inspection. If CDJm can be expressed analytically, f&-in, can 
be solved for by the usual minimization process. This value will, of course, 
indicate only the calm-air gliding efficiency of the craft, whereas for the 
actual ground-speed efficiency, the headwind must also be considered. 

The problem of adjusting the design, if necessary, to obtain a given value 
of (L/D),=, or emin, reduces to an analysis of the effects of the various fac- 
tors in equation (27). In general, increases in (L/D),,, can best be obtained 
by a reduction of the values of S, and CDlm, since this procedure also reduces 
the value of fin in turns. However, if '(L/D),,, is increased by increasing 
the aspect ratio, the resulting design must be reevaluated from-the soaring per- 
formance standpoint since the accompanying increase in wing loading will modify 
imin(r). The p rocedure will then reduce to a series of trials which can be con- 
veniently handled by graphical methods; from these trials, the most optimum com- 
promise can be selected. 

In the selection of a wing profile, it is important to choose a section 
which will have a low drag value over a large CL range, since CD is very 
important in determining both circling and gliding performance with'zquations (22) 
and (27), respectively. The thick laminar-flow profiles, such as characterized 
by the NACA 643-618, appear to be especially suitable for the overall flight 
range since the low drag bucket extends over almost the entire practical lift 
range. 

In order to illustrate the magnitude and variation of L/D and 8 for 
sailplanes designed primarily for thermal soaring, figure 11 has been prepared 
for the same design series for which the circling performance curves are pre- 
sented in figure g(b) for b = 40 feet. Two interesting facts are revealed by 
these curves. First, the maximum value of 
est aspect ratio (A = 5), and secondly, 

L/D is very high even for the low- 
the lift coefficient at which this maxi- 

mum occurs decreases as the aspect ratio decreases. The high value of (L/D)max 
means that even with the small aspect ratios required for optimum soaring (for 

e(;T;e' 
A = 8 to lo), reasonably high gliding angles can still be attained 

LDmax = 24 to 25.5 . 
) 

This condition in turn means that a thermal soarer with 
the previously described characteristics will be able to accomplish distance 
glides with "still-air" efficiency almost comparable to that of many of the 
so-called "high performance" sailplanes. It is interesting to note that the L/D 
curves of figure 11 have a very gradual bending near the maximum so that a large 
CL range may be flown without an appreciable increase in the gliding angle. The 
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second point of interest, the low CL value for (L/D)max which occurs with 
low aspect ratios, is beneficial from the standpoint of attaining adequate ground 
speed. 

Ground Speed 

The requirement of attaining sufficient ground speed depends primarily upon 
the wing loading. In general, a thermal soaring craft would be flown at or near 
the lift coefficient for (L/D)max so that only the wing loading affects the 
airspeed V, since 

(28) 

Since the thermal soaring plane is not primarily concerned with extremely long 
distance flights, time is not of great importance and the craft will generally 
make the most efficient use of altitude by flying with 0 near the minimum value 
while using a wing loading high enough to attain the necessary ground speed. 

If the wing loading of the basic design is assumed to be very low, a con- 
siderable degree of control can be exercised over the airspeed by using ballast 

(a) General form. 

(b) Use with wind vector. 

Figure 12.- Gliding diagram. 

to vary the gross flying weight W and hence 
the gross wing loading. This procedure has 
long been used on high-performance gliders 
and is a particularly suitable means for 
varying the characteristics of the fixed-wing 
thermal sailplane to accommodate varying 
meteorological conditions. 

To determine the actual wing loading 
requirements for a given flight of a thermal 
soaring plane, a conventional gliding diagram, 
such as sketched in figure 12(a), can be con- 
structed for the chosen design. This diagram 
gives the "still-air" ground speed V, and 
the sinking velocity i, where 

v, = ($‘2(&~‘2cos% (29) 

To obtain the desired true ground speed V,' 
in a given headwind VW, the wind vector is 
placed on the diagram, as shown in fig- 
ure 12(b), and the velocity of the craft 
relative to earth is read in the usual manner 
for any flight condition (that is, for any 
value of CL). In particular, the value of 
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VX’ for ( L/D),= can be read directly. The relation for determining the '. 
necessary gross wing loading W/S for a given ground speed Vx' in a headwind 
of vw is simply 

W lvx'+vw (JCL 
( > 

2 -=- 
s 2 

co2 (cot-l g) (30) 

For a design with a permanently fixed wing loading where ballast will not be 
used, a "design" headwind can be established by a statistical analysis of the 
wind records of a particular region and this value used to set the minimum wing 
loading of the craft in much the same manner as the model thermal is used to set 
the design for the soaring phase. 

If the wing loading can be varied by setting the desired value of W before 
a flight, by use of ballast, the flight characteristics can be varied to suit the 
prevailing wind conditions. For instance, on days of low wind, the minimum value 
of W is desirable for maximum soaring efficiency whereas on days of very high 
wind an increase in W may be necessary, even at the expense of decreased 
soaring efficiency. Equation (30) can again be used to calculate the necessary 
ballast weight. This equation can be rearranged to give 

> 
2 pcL ~~~3(d1 $) - WT (31) 

where Wb is the ballast weight necessary to give the desired ground speed Vx', 
and WT is the basic gross weight of the craft and pilot without the ballast. 
When ballast is used, care must be taken that it is added very near the basic 
center of gravity of the craft; otherwise, the drag polar becomes a function of 
the ballast weight because of trim drag. 

Effective Penetration Ability 

Even with a relatively low wing loading, the thermal sailplane may be able 
to accomplish penetration of a given headwind with an overall efficiency 
approaching that of the more efficient, heavily loaded gliders because of the 
soaring ability of the lighter sailplane. Because of its ability to attain 
equilibrium in even small thermals and its ability to gain altitude rapidly and 
frequently, the thermal sailplane will need to be carried downwind a lesser 
distance for a given altitude gain than the slower climbing glider. Despite its 
lower gliding efficiency and wing loading, the soarer may still be able to cover 
ground distance with an average speed comparable with that of the glider. In 
fact, its relative certainty of finding usable thermals may allow it to continue 
gaining headway long after the glider has been forced to land. Actually, strong 
winds favor the production of many small thermals and, as has been seen, these 
winds are especially suited to the efficient operation of a thermal sailplane; 
they are, however, very useless to gliders. This state of affairs is illustrated 
in figure 13, where the solid curve shows the flight path of the glider and the 
dashed curve shows that of the soaring plane, The relative speed efficiencies 
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of the two craft will, of course, depend upon 
the total weather conditions, but the often 
marginal soaring ability of the highly loaded 

T3 T2 
sailplane indicates that the thermal soarer 

t 
may possess some advantages even in the aspect 
of wind penetration. 

H 

Illustration of Gliding Performance 

To illustrate the use of the gliding 
X- diagram and to gain an idea of the ground- 

speed capabi1itie.s of a realistic thermal 
Figure 13.- Comparison of.ground-speed effi- 

ciencies of a glider and a soaring plane. 
soaring plane; figure‘-14. has been prepared 

T denotes equal time intervals. for the particular design of figure p(b) with 
b = 40 feet-.and 'A‘ =‘8, which, as has already 
been seen, possesses optimum efficiency in 

small'turns. This particular design attains, a maximum L/D of 24 at a lift coef- 
ficient of 0.52. The corresponding values of i and Vx, respectively, are 
2.4 feet per second and 58.6 feet per second or 40.1 mi/hr (1 mile = 5,280 feet). 
It thus appears that even in a moderately high headwind, for example, 
VW = 20 miles per hour, reasonable headway can still be made with this craft. 
Because of the flatness of the L/D curve, the value of Vx can be increased 
considerably without excessive decreases in L/D. For example, Vx can be 
increased to approximately 51 miles per hour at CL = 0.33 with an L/D of 21.5 
and to 65.5 miles per hour at CL = 0.20 with an L/D of 15.5. If the ability 
of the thermal soaring plane to work even minimum size thermals efficiently is 
considered, it appears that these values of Vx are sufficient for a wide 
range of horizontal wind velocities, even without ballast. 

In the event b&Last must be used, the necessary weight can be calculated by 
equation (31). The effect of the increased wing loading will, of course, alter 
the optimum circling performance curve &in(r). To determine the new optimum 
curve after ballast addition, one needs only to use the relations: 

(‘/‘)b 
I‘b = w/s r 

where the subscript b denotes the condition with ballast, and the factors with- 
out subscripts refer to the original unballasted condition. It is important to 
note that in using this correction only r is modified. 
&-in(r) 

In effect, the original 
curve is merely shifted to the right by the amount rb - r. The same 

curve shift applies to the q*(r) and CL*(r) curves; that is, after the 
\ 
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addition of ballast the value of T* or CL* that corresponded to a given 
value of r will now have that same value for ,rb, where rb is given by 
equation (33). 

ADVANCED APPROACHES TO DESIGN PROBLEMS 

The foregoing analysis has given a picture of the various.problems and con- 
flicts involved in designing a sailplane for high efficiency in circling flight 
while maintaining reasonably efficient gliding capabilities and has indicated the 
extent to which these problems may be solved by using current sailplane technol- 
WY. Although it appears that an efficient soaring plane can be built by using 
conventional methods, this craft still does not approach the overall efficiencies 
ultimately desired. The possibilities for future improvements therefore must be 
considered. Since the basic concern is with the design of the.thermsl soaring 
plane, the possible improvements of circling flight are discussed primarily, but 
means for increasing gliding efficiency are also considered. 

The improvement of circling efficiency can be attainedby decreasing the 
magnitude of the sinking velocity as a function of r. The relations involved 
are given by the performance equations (5) and (6). Each of the structural and 
aerodynamic factors therein will be examined to see where improvement possibil; 
ities exist. 

Reduction of Wing Loading ' * - . , 

The first obvious improvement needed for increased circling performance is 
a reduction.of the wing load&g without making such structural changes as will 
cause an increase in drag. This reduction can, of course, be accomplished by a 
reduction in the magnitudes of the basic weight W. and the structursl weight 
coefficients rs, 7b., and 7f* Since, W, is fixed for.a given pilot and his 

equipment, little can be done except to mske use of 'miniaturised equipment and 
lightweight parachute packs, The wing-area weight coefficient 7s can probably 
be reduced by applying the new techniqu e of using an extremely thin wing skin 
supported internally by a light foamed plastic. This technique, when fully 
developed, can result in a wing of high structural efficiency as well as aiding 
in the maintenance of perfect profile contours under load. 

b 
The spar weight coefficient 7b can be reduced by development and utiliza- 

tion of new ;tructurel materials with a very small value of the elasticity-weight 
parameter -K.- 

$/2' 
where pw z&s the weight density. At present, aluminum alloys 

offer the lowest values, but with the great strides being made'in solid-state 
physics and polymer chemistry, considerable improvements in structural metals 
and plastics may not be too far away. In reality, complete elimination of the 
wing spar and ribs may not be beyond the realm of foreseeable application with 
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the new fiber-glass and resin fabrication techniques already in use for the manu- 
facture of certain aircraft parts. (See refs.,7 and 8.) 

Of course, certain special wings have long been made without ribs or spars 
by use of air-inflated wing shells. The difficulty of obtaining and maintaining 
an efficient profile and the drag caused by the external bracing usually required 
with these wings have precluded their use on ssilplanes. Further development in 
the weaving of such shells by use of additional and more accurate drop cords, 
combined with internal bracing, can possibly make an efficient wing for sailplane 
use, especially for the small-span soaring plane. Reductions in ys and 7b 

are very important since together they presently contribute up to 50 percent of 
the total wing loading of many sailplanes. 

.The source of the coefficient 7f is particularly amenable to reduction and 
offers the simultaneous advantage of lower drag. Since 7f is associated with 
the fuselage and empennage structure, both of which contribute heavily to the par- 
asite drag, any reduction or elimination of these components will be doubly bene- 
ficial. An optimum design would, of course, be the flying wing, as has long been 
appreciated, but various practical requirements usually demand some amount of 
fuselage and empennage structure. The primary need for the long fuselages used on 
present sailplanes, outside of the small section needed to house the pilot, is to 
support the vertical tail at such a distance,from the center of gravity as to give 
directional stability and sufficient rudder control to overcome the severe adverse 
yaw which usually occurs with large-span high-aspect-ratio wings. Even with the 
long tail lengths used, a large vertical-tail area is still required for direc- 
tional. stability. The fuselage also supports the horizontal tail but a long hori- 
zontal tail length is not actuslly essential if proper location of the center of 
gravity is made. With the small-span thermal soaring plane it should be possible 
to reduce considerably or even eliminate the need for the vertical tail and aft 
fuselage and thus obtain appreciable gains in circling performance and maneuver- 
ability. As has already been discussed, a large vertical tail is undesirable in 
small turns for stability reasons. In this connection it should be noted that 
birds do not use vertical tails and that the body length of all efficient soaring 
birds is especially short; therefore, the wings play the dominant role in 
effecting stability and control. It appears that numerous possibilities exist 
for lowering the minimum wing loading of the thermal soaring plane, and that many 
of these also have favorable drag reduction effects. 

Although it may appear that it is somewhat unnecessary to strive for any 
great reductions in wing loading, because of the requirements for gliding penetra- 
tion, this is not the case since the wing loading of a craft can be increased to 
meet specific wind conditions by addition of ballast, and a low minimum wing 
loading will leave the craft free for attaining the maximum soaring efficiency on 
calm days. In addition, the possible use of variable geometry, to be discussed 
subsequently, requires a very minimum structural weight for all components in 
order that a low basic wing loading would be attainable; In general, gross wing 
loads as low as 1.00 pound per square foot would be very desirable. 
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Improvement of Aspect Ratio 

The next parameter for consideration is the aspect ratio A, .which,is of 
primary importance since it critically affects both wing loading and drag. To 
obtain a low value for i, it is necessary to have a large A, but a large A 
means a high value for W/S with a fixed span length. Thus, as has been pre- 
viously discussed, some compromise of circling efficiency is inevitable. There 
appears, however, a possible way of alleviating this restriction somewhat by 
using the method employed by the land soaring birds such as the hawk and the 
vulture. The method used by the bird is the slotted wing tip, a feature charac- 
teristic of all the larger land soarers. Although the aerodynamics of this mech- 
anism are very involved and include complex aeroelastic effects, it appears 
worthy of investigation as a means for advancing sailplane performance. 

The problem which the bird w3ng appears to solve is that of obtaining a high 
effective aspect ratio kA with a wing of low geometrical aspect ratio. This 
condition, of course, requires that k be greater than 1.0. The outer third of 
each semispan of the wing is composed of seuen to nine separate pinions, each 
acting as an individual airfoil. The first three or four leading pinions have 
a very elastic rachis, or spar, and a large amount of wash-in near the tips so 
that under the airload of flight, they have a pronounced span curvature. (See 
fig. 15.) Such an arrangement allows a separate vortex sheet to emanate from 
each pinion with a consequent spreading of the trailing vorticity over a large 

vertical area. (See fig. 16.) The resulting 
lowering of the effective "downwash" velocity 
at each point of the total wing system con- 
siderably reduces the overall induced drag. 

(4 Wing. 

y Airflow 

(b) Detail of pinion tip wash-in. 

Figure 15,- Wing of a lana soaring bira. 

The problem of determining the maximum 
effective aspect ratio, or efficiency factor 
k, of such a branched-tip wing system can be 
solved by use of the electrical potential 
flow anslog for the simulation of the vortex 
wake. This has been done for a form repre- 
senting a typical branched-tip configuration. 
(See fig. 17.) The value of k for this 
system is 1.35, which means that this wing, 
when optimally loaded, will have 25 percent 
less induced drag than even the most effi- 
cient flat elliptical wing hating equal pro- 
Jetted span and lift, Since the induced drag 
makes up a very large percentage of the total 
drag in smsll turns, this drag reduction can 
be important in reducing the sinking velocity 
in small. turns. The value of such a mech- 
anism in increasing the aerodynamic efficiency 
of a wing of limited span is obvious. A dis- 
cussion of the theoretical and design aspects 
of nonplanar wing systems of the type dis- 
cussed appears in references 9, 10, and 11. 
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Reduction of %,co and CD p 
.Y 

since CD,~ refl-ects primarily the skin friction and pressure drag of'the 
wing, most improvements here must come primarily from the development and perfec- 
tion of construction techniques for laminar-flow profiles, especially those @OS- 

sessing an extensive drag bucket which extends 
to very high lift coefficients'. :,As has been 
discussed previously, several valuable Qrb- 
files already exist for this application, but 
more work is nee.ded, partic&arLy~?or the'high 
Lift design range. Another.sburce of .Lmprove- 
ment lies in the persection of more efficient 
control systems, both aileron andIelevator 
controls. The use of the flap-type aileron 
control is-especially inefficient evenwhen 
the control gap is sealed, since,strong vor- 
tices are still shed from'the,latersl edges 

.' of both the aileron and ting and cause'rkduced 
aileron efficiency and loss of wing lift. '. 

Figure 16.- Vortex sheet pattern for branched Development of lateral control'by wing-tip 
tip. 'warping or by,use of var5abl.e camber 'Ln the 

wing-tip sect-ions would be a great improve- 
ment since full continuity of the surface would be preserved.- Complete eiimina- 
tion of conventional rudder and elevator controls would be even more desirable 
from the drag, weight, and stability view-point of circling flight. 

Reductions in the parasite drag coefficient s,p can come from careful 
attention to such important matters as wing-fuselage juncture design to prevent 
separation and preserve the wing lift distribution, canopy design for stre&lIne ' 
flow, and elimination of aU surface g@ and protuberances. Elimination of.as 
much fuselage (an-empennage) area as is'practical would be advantageous, provided 
the resulting fuselage fineness ratio is not small enough to cause afterbody 
separation with a large pressure drag. The maintenance of a& much Laminar flow 
as possible without premature separation at high ‘l?fts must~be the design aim, i ^. . . 

Improvement of Gliding Efficiency I 

The various means which Jiave been discussed for improv+g circling efficiency 
will, .in general, sJ.so be beneficial Jn increasing gliding performance. However, 
the$rimary gliGng requirements, a 

Figure 17.- Analog representation.of branched-. 
tip vortex system. 

high'lift-drag ratio and moderately high _ 
ground speed, necessitate the us'e of high 
adpect ratio and wing loading, which is 
[directly opposed to the low wing loading 
required for thermal soaring. The only 
obvious possibility for achieving maximum 
performance in both areas lies in .the.applica- 
tion of variable geometry to give the optimum 
wing'loading for each phase. The ideal solu- 
tion to this problem obviously lies in a 
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variable-area, variable-aspect-ratio wing which could be used in the large S, 
small A condition for circling and in the small S, large A condition for 
gliding. This could be most easily accomplished by use of a large, full-span 
Fowler type flap. The basic wing could be designed for optimum soaring perform- 
ance with the lowest possible wing loading. Then a large percentage, as much as 
30 to 40 percent, of the trailing part of the wing could be designed to retract 
into the main wing to reduce the wing area and simultaneously increase the aspect 
ratio for efficient gliding. The design and construction of such a wing would. 
no doubt be very complex, especially since the parasite drag must be kept to bn 
absolute minimum. The added structural weight that would most probably occur 
with such a variable-geometry airfoil makes the foregoing weight-reduction pos- 
sibilities all the more important in order that a very low overall wing loading 
will be attained; 

Other methods for accomplishing these requirements are possible. For 
example, the soaring bird reduces his wing area for a fast glide by partially 
flexing his wings so that much of the basic area of the secondary feathers over- 
laps.' The resulting cranked wing not only reduces the wing area but also appears 
to serve the trim and stability needs for tile high-speed flight. 

CONCLUDING REMARKS 

It has been the intention of this paper to discuss the concept and potenti- 
alities of the thermal sailplane as a means for increasing the reliability and 
certainty of local soaring flight and to outline in a general way a procedure by 
which the optimum design of such a craft can be determined. An attempt has been 
made to relate in a quantitative manner the relevant meteorological, structural, 
and aerodynamic factors involved in thermal soaring flight so as to best satisfy 
nature's requirements for efficient use of the thermal energy in vortex shell 
convections. The problems and conflicts arising in the design of a sailplane 
for high performance in both the soaring and gliding phases of flight have also 
been considered, and various compromises and ideal solutions discussed. 

The considerations in this paper indicate that despite the handicap of 
insufficient quantitative thermal data for design purposes, enough information 
#can be obtained from various sources to proceed with the design and construction 
of a conventional-geometry thermal sailplane capable of very high performance in 
soaring flight and with satisfactory gliding and penetration abilities. Such a 
plane can serve as a research vehicle for gathering the thermal data needed for 
more optimum designs. With such a tool as the thermal sailplane, much gener- 
ally vsluable information on the meteorological structure and properties of the 
lower atmosphere can be obtained. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 19, 1963. 
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APPENDIXA 

' STABILITY OF CIRCLING FJJGRT 

Unlike the relatively simple aerodynamics of a spiral glide in still air, 
circling flight within thermals is very complex and this complexity is compounded 
when the size of the thermal shell approaches the same order of magnitude as the 
wing span of the sailplane. 

Effects ficountered in Large Thermals 

First consider the effects of circling in the interior of a thermal which 
is very large compared with the span; that is, R/b 7> 1. (See fig. 18.) In 

this case, the craft will be circling in an 
essentially uniform upcurrent. As the craft 
circles, the outer wing tip travels faster 
relative to the air than does the inner tip, 
with a resultant difference in dynamic pres- 
sure which is proportional to the difference 
in the squares of the tip velocities. A 
simple analysis shows that the ratio of the 
dynamic pressure q. at the outer wing tip 
to that at the inner wing tip qi is given 
approximately by 

Figure 18..- Sailplane circling in a large 
thermal. - 

s, = (1 f &OS q$2 

qi 
( 1 

2 (U 
1‘ - &co, cp 

where rp is the bank angle and r is the radius of turn. This relation is 
plotted in figure 19 for a range of values of cp. It is obvious that this ratio 
can attain very large values for .large values of'the relative-size factor 

& cos cp, corresponding to small turns with a small bank angle (cos cp -1). This 
large q-difference can produce a very strong rolling moment into the tti. 

Without any compensating effects, a sailplane in a really tight turn 
(r/b approaching l/2) would continue to bank until 'a stall and spin developed, 
despite aileron control. Two secondary factors, however, help reduce this 
unstable moment. First, since the inner wing is traveling at a lower circling 
velocity, it will experience a higher angle of attack than the outer wing, as 
shown in figure 20. This condition will help to counteract the q-difference 
effect. Quantitatively, the angle-of-attack variation a(y) across the span 
in a turn is given by 
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Figure lg.- Variation of dynamic pressure ratio with radius of turn parameter. 
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a(Y) = a0 + 

i cos ql 

v, 1 - ; cos cp 
1 

(A21 

where a0 is the effective angle of 
attack at the center of the wing, V, 
is the circling velocity of the sail- 
plane, and y is the distance meas- 
ured from the plane of symmetry and 
is positive in the direction of the 
inside wing tip. 

Figure 20.- Representation of resultant velocity and 
angle-of-attack variation across span of a The result of the combined dynamic 
circling wing. pressure and angle-of-attack effects is 

that a net unstable rolling moment 
still exists. The two effects combine to produce a spanwise lift loading which 
can be expressed as follows: 

c 2 
L' (Y> = Tq3caoVc 21 - g cos cp > -I- flpcvci cos cp 1 - $ 

( 
cos cp 

) 

and it is evident from inspection of the second term on thk right that the effects 
of the dynamic pressure decrease on the inside wing and overcome those of the 
angle-of-attack increase. Thus, a net rolling moment 2 into the turn will still 
exist in the magnitude of 

(a) Sideslip velocity. 

tip ‘\ Y sir. p ‘\ “C /’ 
-__-------- ___--- -----_---_---- 

‘vihq phIform 

(b) Sideslip angle. 

Figure 21.- Sideslip velocity V sin q due to angle of bank. 

s 
b/2 

1 = L’(Y) Y dy (A4) 
-b/2 

Equations (A3) and (Ah) may be 
used to calculate the appr-.-:i.mate 
value of this unstable moment for 
a given wing in circling flight. 

A second effect exists, how- 
ever, which usually makes cir- 
cling flight stable. Because of 
the large bank angles necessary 
for such small turns that 
q-effects are significant, the 
upcurrent actually produces a 
component of sideslip velocity 
V sin cp as shown in figure 21(a). 
The angle of sideslip p thus 
produced varies across the span 
because of the difference in tip 
speeds. (See fig. 21(b).) This 
sideslip velocity acts on both 
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the wing and vertical tail to produce rolling moments opposing the bank. The 
vertical tail can contribute a strong negative input to the effective dihedral 
ac2/33, and the decreasing effective angle of sideslip on t&e outer wing causes 
a piling up of the boundary 'layer near the tip stations and may ultimately cause 
the tip region to stall in tight turns, provided the span is large enough. The 
crossflow can also lead to flow separation on the,fuselage nose and canopy with 
detrimental effects of the wake on the lift of the outer wing. A yawing moment 
into the turn will also be produced by the tail side force but this effect is 
somewhat balanced by the side force on the nose and asymmetric wing drag. Thus, 
for sailplanes with high wing loadings and large spans, with resulting large 
values for the minimum radius of turn (such as characterized by modern designs), 
these secondary stabilizing effects tend to delay the ultimate onset of the 
unstable rolling moment in small turns. The very high wing loadings of current 
large-span sailplanes limit the minimum radius of turn to such large values that 
roll instability effects are scarcely noticeable, and only moderate, if any, 
aileron control is necessary to hold "tight" turns. 

For large-span sailplanes with low wing loadings, however, the stability 
picture is very different. With such loadings the q-effects become very signif- 
icant because of the relatively small minimum radius of turn which can be made 
and the favorable sideslip effects diminish because the craft does not have to 
bank as much to attain a given radius of turn as with a heavier loading. The 
angle-of-attack effects also increase but may now become detrimental. Because 
of the low speed of the inner wing, the airfoil section Reynolds number is low- 
ered, with an accompanying decrease in the maximum section lift coefficient. 
Ultimately, a point is reached where the inner tip stalls and the craft goes 
into a spin. Several of the early German sailplanes having very low wing loadings 
and very large spans were actually victims of this phenomenon. It should be noted 
that such adverse effects depend upon the combination of both large span and low 
wing loading. Combinations of large span and high wing loading or small span 
and low wing loading can alleviate these dangers considerably. These facts must 
be carefully considered in designing a thermal sailplane. 

Effects Encountered in Small Thermals 

Consider now the situation which will be encountered by a sailplane circling 
in a thermal whose sloe is of the same order 
as the wing span, that is, a large-span sail- 
plane in a small thermal, as shown in fig- 
ure 22. This condition, of course, presup- 
poses the craft to have a sufficiently low 
wing loading. The craft will no longer be 
circling in a uniform upcurrent, and the 
effective aerodynamic velocity will vary all 
across the span because of the variations in 
the air current. The same effects as pre- 
viously discussed will still exist, but 
because the span extends over a large per- 
centage of the thermal, the velocity of the 

Figure 22.- Sailplane circling In 8 emall upflow will decrease across the span and tend 
thermal. to load the inner wing and unload the outer 
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wing. Depending upon the relative sizes of the thermal and span, this stable 
loading trend can become very detrimental to efficient soaring. If the span is 
too large, such a strong stable rolling moment will be produced that the craft 
cannot possibly hold the bank necessary to circle within the shell. In fact, if 
the desired bank is obtained by some means such as use of initial rolling momen- 
tum, the inner wing will be promptly lifted and the plane rolled back out of the 
turn. On the other hand, the danger of stalling the inner wing exists. Thus, 
there are two extreme's, too much stability and complete instability, operating 
very close to one another. In this case, the effects of the radial flow compo- 
nents, as shown in figure 23, must also be considered. This flow produces not 

Figure 23.- Velocity compo- 
nents clue to the radial 
flow vr. 

only a sideslip velocity but also a component normal to 
the span which, in the top half of the thermal, acts to 
decrease the angle of attack. For large spans, the 
outer wing will be primarily affected by this radial 
flow, and, as a result, there is a decrease in its 
loading and a rolling moment opposing the turn. The 
combined effects of the vertical and radial components 
on large spans in smsll thermals can thus produce such 
high stability that it may be impossible to circle 
within the thermal, even with full use of ailerons, and 
the thermal energy cannot be used. 

Estimation of Stability Effects 

These stability effects can be estimated in a quantitative manner, provided 
the necessary thermal data are available. For example, if the bank angle cp and 
coordinates 1"CJ% of the flight path of a given sailplane in a given thermal 
are established or assumed, then to each point of the span there may be assigned 
a position r,v as shown in figure 24(a). Analytically, the line segment repre- 
senting the span can be simply expressed as 

between the limits 

rC 
b - F cos cp 5 5 5 rc b + F cos cp 

(A51 

(A6) 

where vbJrb are variable-span coordinates referred to the thermal origin, 7, 
is the v-intercept of the span extended, and rc is the radius of turn. The 
entire span can then be transformed to an equivalent curve on the thermal diagram 
by placing the various rb,% pOintS at the corresponding r,Tj positions on the 
dimensional thermal diagram, and the variation of vertical (or radial) velocity 
across the span read directly, as shown in figure 24(b). With these values, the 
lift loading and rolling moment can be estimated. 
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In addition to stability effects occurring with large spans, there exist 
the accompanying increases in trim, 

(a) Space diagram. 

(b) Velocity diagram with transformed 
span. 

Figure 24.- Diagranls for determining velocity 
distribution across span in small thermals. 

separation, and induced drags. These 
increases can so increase the sinking veloc- 
ity that the very reason for having a large 
span is no longer valid, insofar as circling 
flight is concerned. 

It is clear from the foregoing consider- 
ations that large-span sailplanes attempting 
to operate in small thermals may expect to 
encounter many adverse effects. The exact 
nature and magnitude of these effects will 
depend upon the relative size of the thermal 
and span and upon the thermal strength, and 
even with a full knowledge of thermal char- 
acteristics, the complete aerodynamic anal- 
ysis of such a flight will still be very 
lengthy and complex. In fact, much of the 
necessary aerodynamic theory, such as the 
induced-velocity field of the spiral asym- 
metric vortex sheet produced by a circling 
sailplane in small turns, has not even been 
developed; thus, only crude approximations 
of many of the effects can be made. 

The obvious and necessary conclusion 
is that the thermal soaring plane must be 
designed with a span that is small compared 
with the minimum thermal size in which it is 
intended to operate with full efficiency. 
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: -THERMAL DISTRIBUTIONS 

If large and powerful thermals were very numerous at all places and at all 
times of the day and year, existing sailplane designs would be quite sufficient 
and there would be no need for a special sailplane to increase the certainty of 
flight. Obviously, such is not the case. The facts point to the conclusion that, 
on a relative-size basis, small thermals make up the larger percentage of the 
total thermal production. This is also,obvious from elementary considerations. 
Surface heating produces only a limited volume of buoyant air in a given time 
interval so that the size of the thermals produced from this air will depend upon 
the number of total thermals formed. If the thermals are large, only a few can 
be formed; thus, the frequency of production will be low. If they are small, the 
frequency of formation will be high. The production of large thermals requires 
that the heated air layer (ref. 2) be held in an unstable equilibrium for a rela- 
tively long time while sufficient warm air accumulates. The maintenance of such 
an equilibrium for any appreciable length of time is generally impossible because 
of the continuous generation of turbulence in the lower air layers by the hori- 
zontal air motion. This action strongly favors the production of many small ther- 
mals. The large thermals which occur over the southwestern part of this country 
in late summer and in tropical desert regions are due to the very high rates of 
surface heating in those regions, where large volumes of hot air are produced 
very rapidly. Unfortunately for soaring, such areas in this country are very 
limited since vegetative cover reduces surface temperatures appreciably. 

Thermal Frequency Diagram 

In general, one would expect for a given type of surface terrain and surface 
heating rate one thermal size or range of sizes to be produced with a higher fre- 
quency (number of thermals per unit surface area per unit time) than other sizes, 
the frequency tending to zero for larger or smaller thermals on either side of 
this maximum-frequency size. The generalized form of such a distribution is 
shown in figure 25(a), where the thermal size of maximum frequency has been iden- 
tified as R', and u is the formation frequency. The value of R' is most 
probably a strong function of the type of terrain and strength of the prevailing 
wind. In addition, the values of both 6' and R' are no doubt very strong 
functions of the time of the day and year because of the variation of the surface 
heating rate. The whole secret of attaining a high degree of certainty in soaring 
flight lies in the ability of sailplanes to accomplish equilibrium flight in a 
small enough thermal that the production frequency and distribution of this size 
and all larger thermals is sufficient to guarantee a high probability that a 
usable thermal can be intercepted in sufficient time when needed for altitude 
gain. 

The determination of a minimum-size thermal to use as a design basis for a 
thermal soaring craft depends very much upon the magnitude of u for each ther- 
mal size. For example, if 0 were sufficiently large for even very large 
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(b) "Design" thermal size. 

Figure 25.- Thermal production frequency diagram. 

thermals, there would be no need to design 
for use of the smaller thermals even though 
they make up by far the greater percentage 
of the total thermal production. This condi- 
tion is illustrated in figure 25(b) where the 
"design" thermal size occurs near the upper 
size limit. Unfortunately, modern sailplanes 
have made it clear that, except for a few 
exceptional areas during the hottest summer 
months, the production frequency of suffi- 
ciently large thermals is far below their 
soaring needs. 

Fundamental Hypothesis of 

Soaring Reliability 

It therefore appears that the solution 
to increased soaring certainty and efficiency 
lies in the development of a sailplane capa- 
ble of performing turns of very small radius 
while still maintaining a relatively low 
sinking velocity. Then a very large range of 
thermal sizes and strengths2 will become 
available for use, and the certainty of 
flight will greatly increase. Indeed, it is 
true that the only reason an improvement in 
the certainty of soaring flight can be 
expected is that the atmosphere is filled 
during the day with a large number of small 

thermals rather than a few large ones. This statement might be rephrased as the 
"fundamental reliability hypothesis" of thermal soaring: The production fre- 
quency and spatial distribution of small thermals in the atmosphere is suffi- 
ciently great that an aircraft which can attain equilibrium in small thermals 
will be capable of increased certainty of sustained flight compared with a craft 
which can use only the larger thermals. The validity of this hypothesis is well 
supported by existing data. 

ti0 mention has been made here of the range of thermal-strength variation 
which may occur for a given thermal size; this variation is an important but 
secondary problem. 
very weak thermals. 

The thermal sa+lplane must always be designed for use of 
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